
Implementation of Area Efficient Memory-Based
FIR Digital Filter Using LUT-Multiplier

K.Purnima, S.AdiLakshmi, M.Jyothi

Department of ECE, K L University

Vijayawada, INDIA

Abstract— Memory based structures are well-suited for many
digital signal processing (DSP) applications, which involve
multiplication with a fixed set of coefficients. Memory-based
structures are more regular compared with the multiply-
accumulate Structures and have many other advantages of less
area and reduced latency implementation since the memory-
access-time is much shorter than the usual multiplication-time
compared to the conventional multipliers. Distributed arithmetic
(DA)-based computation is popular for its potential for efficient
memory-based implementation of finite impulse response (FIR)
filter. In this paper, however, we show that the look-up-table
(LUT)-multiplier-based approach, where the memory elements
store all the possible values of products of the filter coefficients
could be an area-efficient alternative to DA-based design of FIR
filter with the same throughput of implementation. By operand
and inner-product decompositions, respectively, we have
designed the conventional LUT-multiplier-based and DA-based
structures for FIR filter of equivalent throughput, where the
LUT-multiplier-based design involves nearly the same memory
and the same number of adders, and less number of input
register at the cost of slightly higher adder-widths than the other.
Moreover, we present new approach to LUT-based
multiplication, which could be used to reduce the memory size to
half of the conventional LUT-based multiplication. Besides, we
present a modified transposed form FIR filter, where a single
segmented memory-core with only one pair of decoders are used
to minimize the combinational area. We have implemented the
FIR filter using proposed LUT-multiplier and LUT-multiplier
based transposed form FIR filter both of order four using Xilinx
tool in VHDL.

Keywords— DSP chip, memory-based structures, distributed
arithmetic, LUT-based multiplier, FIR filter, Xilinx tool, VLSI.

I. INTRODUCTION

Finite-Impulse response (FIR) digital filter is widely used
as a basic tool in various signal and image processing
applications [1]. Many applications in digital communication,
speech processing, seismic signal processing and several other
areas require large order FIR filters [2]. Since the number of
multiply-accumulate (MAC) operations required per filter
output increases linearly with the filter order; real-time
implementation of these filters of large orders is a challenging
task. Therefore, several attempts have been made and
continued to develop low-complexity dedicated VLSI systems
for these filters [3]-[5].

II. MEMORY-BASED STRUCTURES

 In this paper, we use the phrase “memory-based structures”
or “memory-based systems” for those systems where memory
elements like RAM or ROM is used either as a part or whole
of an arithmetic unit [10]. Memory-based structures are more
regular compared with the multiply-accumulate structures;

and have many other advantages, e.g., greater potential for
high-throughput and reduced-latency implementation, (since
the memory-access-time is much shorter than the usual
multiplication-time) and are expected to have less dynamic
power consumption due to less switching activities for
memory-read operations compared to the conventional
multipliers. Memory-based structures are well-suited for many
digital signal processing (DSP) algorithms, which involve
multiplication with a fixed set of coefficients.
 There are two basic variants of memory-based techniques.
One of them is based on distributed arithmetic (DA) for inner
product computation [11]-[13], [14], [15] and the other is
based on the computation of multiplication by look-up-table
(LUT). In the LUT-multiplier-based approach, multiplications
of input values with a fixed-coefficient are performed by an
LUT consisting of all possible pre-computed product values
corresponding to all possible values of input multiplicand,
while in the DA-based approach, an LUT is used to store all
possible values of inner-products of a fixed –N-point vector
with any possible N-point bit-vector. If the inner-products are
implemented in a straight-forward way, the memory-size of
LUT-multiplier based implementation increases exponentially
with the word length of input values, while that of the DA-
based approach increases exponentially with the inner-
product-length. Attempts have been made to reduce the
memory-space in DA-based architectures using offset binary
coding (OBC) [11] and group distributed technique [13]. A
decomposition scheme is suggested in a recent paper [14] for
reducing the memory-size of DA-based implementation of
FIR filter. But, it is observed that the reduction of memory-
size achieved by such decompositions is accompanied by
increase in latency as well as the number of adders and
latches.

III. LUT DESIGN FOR MEMORY BASED MULTIPLICATION

 The basic principle of memory-based multiplication is
depicted in Fig. 1. Let A be a fixed coefficient and X be an
input word to be multiplied with A. If we assume X to be an
unsigned binary number of word-length L, there can be 2L
possible values of X, and accordingly, there can be 2L possible
values of product C=A.X . Therefore, for the conventional
implementation of memory-based multiplication [15], a
memory unit of 2L words is required to be used as look-up-
table consisting of pre-computed product values
corresponding to all possible values of X. The product-word,
(A.Xi) for 0 Xi 2

L-1, is stored at the memory location
whose address is the same Xi as the binary value of Xi , such
that if L-bit binary value of Xi is used as address for the
memory-unit, then the corresponding product value is read-out
from the memory.

 K.Purnima et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3530-3535

3530

 Fig.1. Conventional Memory-Based Multiplier

IV. DISTRIBUTED ARITHMETIC ARCHITECTURE

 Fig.2. Distributed arithmetic block diagram

 DA is a bit-serial operation that implements a series of
fixed-point MAC operations in a fixed number of steps,
regardless of the number of terms to be calculated. One
problem with original DA architecture is that its LUT size
(2K-words) grows exponentially as the filter order N increase.
 If the inner-products are implemented in a straight-forward
way, the memory-size of DA based implementation increases
exponentially with the inner-product-length. Attempts have
been made to reduce the memory-space in DA-based
architectures for reducing the memory-size of DA-based
implementation of FIR filter. But, it is observed that the
reduction of memory-size achieved by such decomposition is
accompanied by increase in latency as well as the number of
adders and latches.

V. MEMORY-BASED FIR FILTER USING CONVENTIONAL LUT

 The recursive computation of FIR filter output can also be
understood from the FIR filter structure using conventional
LUT-multiplier as shown in Fig. 3.1. Each multiplication node
performs the multiplication of an input sample value with the
absolute value of a filter coefficient. The AS node adds or
subtracts its input from top with or from that of its input from
the left when the corresponding filter coefficient is positive or
negative, respectively. It may be noted here that each of the
multiplication nodes performs multiplications of input
samples with a fixed positive number.
 This feature can be utilized to implement the
multiplications by an LUT that stores the results of
multiplications’ of all possible input values with the
multiplying coefficient of a node as unsigned numbers. The
multiplication of an L-bit unsigned input with W-bit
magnitude part of fixed filter-weight, to be performed by each
of the multiplication-nodes of the DFG, can be implemented
conventionally by a dual-port memory consisting of words of
(W+L) bit width. Each of the nodes of the DFG along with a
neighbouring delay element can be mapped to an add-subtract
(AS) cell. A fully pipelined structure for N-tap FIR filter for

input word length L=8 is derived accordingly from the DFG.
It consists of N memory-units for conventional LUT-based
multiplication, along with (N-1) AS cells and a delay register.
All the 8 bits of current input sample x (n) are fed to all the
LUT-multipliers in parallel as a pair of 4-bit addresses X1 and
X2 and the structure of the LUT-multiplier is shown in Fig 3.2.

Fig.3.1. Conventional LUT-multiplier-based structure of an n-tap FIR Filter
for input-width L=8.

 Fig.3.2. Structure of each LUT-multiplier

 It consists of a dual-port memory unit of size [16 x (W+4)]
(consisting of 16 words of (W+4)-bit width) and a shift-add
(SA) cell. The SA cell shifts its right-input to left by four bit-
locations and adds the shifted value with its other input to
produce a (W+8)-bit output. The shift operation in the shift-
add cells is hardwired with the adders, so that no additional
shifters are required. The outputs of the multipliers are fed to
the pipeline of AS cells in parallel. Each AS cell performs
exactly the same function as that of the AS node of the DFG.
It consists of either an adder or a subtracter depending on
whether the corresponding filter weight h(n) is positive or
negative, respectively. Besides, each of the SA cells consists
of a pipeline latch corresponding to the delays in the DFG of
Fig 3.1.

VI. MEMORY-BASED FIR FILTER USING PROPOSED LUT

MULTIPLIER

 The realization of digital FIR filter using proposed LUT
based multiplier is done by using direct form realization
structure of digital FIR filter. The equation, which defines the
FIR filter with output sequence y[n] in terms of its input
sequence x[n]:

 K.Purnima et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3530-3535

3531

 Where x[n] is the input signal, y[n] is the output signal,
h[k] is the coefficients of FIR filter frequency response, and N
is the filter order.

A. Proposed LUT Design Based 4-Bit Multiplier
 The proposed LUT-based multiplier for input word-size
L=4 is shown in fig.4. It consists of a memory-array of eight
words of (W+4)-bit width and a 3-to-8 line address decoder,
along with a NOR-cell, a barrel-shifter, a 4-to-3 bit encoder to
map the 4-bit input operand to 3-bit LUT-address, and a
control circuit for generating the control-word for the barrel-
shifter, and the RESET signal for the NOR-cell.

 Fig.4. Proposed LUT design based 4-bit multiplier

 TABLE.1 LUT words and product values for input word length L=4

 Although 2L possible values of X correspond to 2L possible
values of C=A.X, recently we have shown that only (2L/2)
words corresponding to the odd multiples of A may only be
stored in the LUT [16]. One of the possible product words is
zero, while all the rest (2L/2)-1 are even multiples of A which
could be derived by left-shift operations of one of the odd
multiples of A. We illustrate this in Table I for L=4. At eight
memory locations, eight odd multiples A x (2i+1) are stored
as Pi for i=0, 1, 2… 7. The even multiples 2A, 4A and 8A are

derived by left-shift operations of A. Similarly, 6A and 12A
are derived by left-shifting 3A, while 10A and 14A are
derived by left-shifting 5A and 7A, respectively. The address
X= (0000) corresponds to (A.X) =0, which can be obtained by
resetting the LUT output. For an input multiplicand of word-
size L similarly, only (2L/2) odd multiple values need to be
stored in the memory-core of the LUT, while the other (2L/2-
1) non-zero values could be derived by left-shift operations of
the stored values. Based on the above, an LUT for the
multiplication of an L-bit input with W-bit coefficient is
designed by the following strategy:
•A memory-unit of (2L/2) words of (W+L)-bit width is used to

store all the odd multiples of A.
• A barrel-shifter for producing a maximum of (L-1) left shifts

is used to derive all the even multiples of A.
• The L-bit input word is mapped to (L-1)-bit LUT-address by

an encoder.
•The control-bits for the barrel-shifter are derived by a

control-circuit to perform the necessary shifts of the LUT
output. Besides, a RESET signal is generated by the same
control circuit to reset the LUT output when X=0.

1) 4-to-3 bits input encoder:

Fig.4.1. 4-to-3 bits input encoder.

 The 4-to-3 bit input encoder is shown in Fig.4.1. It receives
a four-bit input word and maps that onto the three-bit address
word, according to the logical relations

 The decoder takes the 3-bit address from the input encoder,
and generates 8 word-select signals, to select the referenced-
word from the memory-array. From Table 1 we find that the
LUT output is required to be shifted through 1 location to left
when the input operand is one of the values

Two left-shifts are required if is either (0 1 0 0) or (1 1 0 0).
Only when the input word X= (1 0 0 0), three shifts are
required. For all other possible input operands, no shifts are
required. Since the maximum number of left-shifts required on
the stored-word is three, a two-stage logarithmic barrel-shifter
is adequate to perform the necessary left-shift operations.

 K.Purnima et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3530-3535

3532

2) Control circuit:
 The number of shifts required to be performed on the output
of the LUT and the control-bits s0 and s1 for different values of
X are shown in Table I. The control circuit shown in Fig.4.2
accordingly generates the control-bits given by

Fig.4.2. Control circuit

The input X= (0 0 0 0) corresponds to multiplication by X=0
which results in the product value equal to 0. Therefore, when
the input operand word X= (0 0 0 0), the output of the LUT is
required to be reset.

3) Structure of the NOR-cell:

 Fig.4.3. Structure of the NOR-cell.

 The RESET bit is fed as one of the inputs of all those NOR
gates, and the other input lines of (W+4) NOR gates of NOR
cell are fed with (W+4) bits of LUT output in parallel. When
X= (0 0 0 0), the control circuit in Fig.4.2, generates an active-
high RESET according to the logic expression.

4) Two-stage logarithmic barrel-shifter:

 Fig.4.4. Two-stage logarithmic barrel-shifter for W=4

 A logarithmic barrel-shifter for W=L=4 is shown in Fig4.4.
It consists of two stages of 2-to-1 line bit-level multiplexors
with inverted output, where each of the two stages involves

(W+4) number of 2-input AND-OR-INVERT (AOI) gates.
The control-bits and are fed to the AOI
gates of stage-1 and stage-2 of the barrel-shifter, respectively.
Since each stage of the AOI gates perform inverted
multiplexing, after two stages of inverted multiplexing,
outputs with desired number of shifts are produced by the
barrel-shifter in (the usual) un-inverted form.

B. Memory-Based Multiplier Using Dual-Port Memory-Array

 Fig.5. Memory-based multiplier using dual-port memory-array.

 Multiplication of an 8-bit input with a w -bit fixed
coefficient can be performed through a pair of multiplications
using a dual-port memory of 8 words (or two single-port
memory units) along with a pair of decoders, encoders, NOR
cells and barrel shifters as shown in Fig.5. The shift-adder
performs left-shift operation of the output of the barrel-shifter
corresponding to more significant half of input by four bit-
locations, and adds that to the output of the other barrel-shifter.
C. Memory Based FIR Filter Using Proposed LUT-Multiplier
 The memory-based structure of FIR filter (for 8-bit inputs)
using the proposed LUT design is shown in Fig. 6.1. It differs
from that of the conventional memory-based structure of FIR
filter of Fig. 3.1 in two design aspects.
1) The conventional LUT-multiplier is replaced by proposed
odd-multiple-storage LUT, so that the multiplication by an L-
bit word could be implemented by (2L/2)/2 words in the LUT
in the dual-port memory.
2) Since the same pair of address words X1 and X2 are used
by all the N LUT-multipliers in Fig. 3.1, only one memory
module with segments could be used instead of N modules. If
all the multiplications are implemented by a single memory
module, the hardware complexity (used in Fig.3.1) could be
eliminated.

Fig.6.1. Structure of N th order FIR filter using proposed LUT-multiplier.

 K.Purnima et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3530-3535

3533

 Fig.6.2.The dual-port segmented memory core for the Nth order FIR filter.

 As shown in Fig.6.1 the proposed structure of FIR filter
consists of a single memory-module, and an array of N shift-
add (SA) cells, (N-1) AS cells and a delay register. The
structure of memory module of Fig.6.1 is similar to that of Fig.
5. Like the structure of Fig.5, it consists of a pair of 4-to-3 bit
encoders and control circuits and a pair of 3-to-8 line decoders
to generate the necessary control signals and word select
signals for the dual-port memory core.
 A pair of 4-bit sub-words X1 and X2 are derived from the
input sample x(n) and fed to the pair of 4-to-3 bit encoders
and control circuits, which produce two sets of word-select
signals (WS1 and WS2),a pair of control signals ((s01, s00) and
(s11, s10)) , and two reset signals. All these signals are fed to
the dual-port memory-core of [8 x (W+4)] size as shown in
Fig.6.1. N segments of the memory-core then produce N pairs
of corresponding output, those are fed subsequently to the
pairs of barrel-shifters through the 2N NOR cells. The array of
N pairs of barrel-shifters thus produce N pairs of output
(h(i).X1, h(i).X2) for The structure and
function of the NOR cells and the barrel-shifters are the same
as those discussed. The structures and functions of the SA
cells and AS cells are the same as those of Fig.3.1 for the
structure of conventional LUT-multiplier-based FIR filter.

VII. LUT-MULTIPLIER-BASED FIR FILTER STRUCTURE

BY TRANSPOSED FORM REALIZATION

 We find that instead of direct-form realization, transposed
form realization of FIR filter is more efficient for the LUT-
multiplier-based implementation. In the transposed form, a
single segmented-memory core could be used instead of
separate memory modules for individual multiplications in
order to avoid the use of individual decoders for each of those
separate modules.

Fig.7. LUT-multiplier-based structures of an N-tap FIR filter by transposed

form realization using segmented memory-core.

 Since the same pair of address words X1 and X2 are used
by all the LUT-multipliers in Fig.3.1, only one memory
module with segments could be used instead of independent
memory modules.
 A conventional LUT-multiplier-based structure of an N-tap
FIR filter using segmented memory-core is shown in Fig.7. It
consists of dual-port segmented memory-core of size [16 x
(W+4)] x N, which consists of N segments of size [16 x
(W+4)]. The structure of Fig.7, involves only one pair of 4-to-
16 lines decoders to receive an 8-bit input sample in each
cycle, and to provide a pair of 16-bit word select signals WS1
and WS2 to the segmented memory core. The latency and
throughput per cycle of this structure are the same as that of
fig 6.1.

 VIII. RESULTS
 We have implemented the FIR filter using proposed LUT-
multiplier and LUT-multiplier based transposed form FIR
filter both of order four using Xilinx tool and we have
presented the output for each order upto four in the simulated
results.

Fig.8.Simulation results of Proposed Four bit LUT multiplier

Fig.9.Simulation results of FIR filter using Proposed LUT multiplier

 K.Purnima et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3530-3535

3534

Fig.10.Simulation results of transposed form FIR filter using LUT multiplier

IX. CONCLUSION

 The proposed LUT-multiplier-based design of FIR filter is
more efficient than the previous DA and Conventional LUT
based design of FIR filter in terms of area complexity for a
given throughput and lower latency of implementation.
Finally it is proved to be a low-complexity dedicated VLSI
system for filters. Therefore LUT multipliers could be used
high speed hardware implementation of digital filters and also
for memory-based implementation of cyclic and linear
convolutions, sinusoidal transforms, and inner-product
Computation. The performance of memory based structures,
with different adder and memory implementations could be
studied in future for different DSP applications.

REFERENCES
[1] J. G. Proakis and D. G. Manolakis, Digital Signal Processing: Principles,
Algorithms and Applications. Upper Saddle River, NJ: Prentice- Hall, 1996.
[2] D. Xu and J. Chiu, “Design of a high-order FIR digital filtering and

variable gain ranging seismic data acquisition system,” in Proc. IEEE
Southeastcon’93, Apr. 1993, p. 6.

[3] K. K. Parhi, VLSI Digital Signal Procesing Systems: Design and
Implementation. New York: Wiley, 1999.

[4] H. H. Dam, A. Cantoni, K. L. Teo, and S. Nordholm, “FIR variable digital
filter with signed power-of-two coefficients,” IEEE Trans. Circuits Syst. I,

Reg. Papers, vol. 54, no. 6, pp. 1348–1357, Jun. 2007.
[5] R. Mahesh and A. P. Vinod, “A new common subexpression elimination
algorithm for realizing low-complexity higher order digital filters,” IEEE

Trans. Computer-Aided Ded. Integr. Circuits Syst., vol. 27, no. 2, pp.
217–229, Feb. 2008.

[6] International Technology Roadmap for Semiconductors, [Online].
Available: http://public.itrs.net/

[7] K. Itoh, S. Kimura, and T. Sakata, “VLSI memory technology: Current
status and future trends,” in Proc. 25th Eur. Solid-State Circuits
Conference,

{ESSCIRC’99}, Sep. 1999, pp. 3–10.
[8] T. Furuyama, “Trends and challenges of large scale embedded memories,”
in Proc. IEEE Conf. Custom Integrated Circuits, Oct. 2004, pp. 449–456.
[9] D. G. Elliott, M. Stumm, W. M. Snelgrove, C. Cojocaru, and R. Mckenzie,

“Computational RAM: Implementing processors in memory,” IEEE
Trans. Design Test Comput., vol. 16, no. 1, pp. 32–41, Jan. 1999.

[10] H.-R. Lee, C.-W.Jen and C.-M. Liu, “On the design automation of the
memory-based VLSI architectures for FIR filters,” IEEE Trans.
Consum. Electron., vol. 39, no. 3, pp. 619–629, Aug. 1993.

[11] S. A. White, “Applications of the distributed arithmetic to digital signal
processing: Atutorial review,” IEEE ASSP Mag., vol. 6, no. 3, pp. 5–19, Jul.

1989.

[12] M. Mehendale, S. D. Sherlekar, and G.Venkatesh, “Area-delay tradeoff
in distributed arithmetic based implementation of FIR filters,” in Proc. 10th

Int. Conf. VLSI Design, Jan. 1997, pp. 124–129.
[13] H.-C. Chen, J.-I. Guo, T.-S. Chang, and C.-W. Jen, “A memory-efficient
realization of cyclic convolution and its application to discrete cosine

transform,” IEEE Trans. Circuits Syst. Video Technol., vol. 15, no. 3,
pp. 445–453, Mar. 2005.

[14] P. K. Meher, S. Chandrasekaran, and A. Amira, “FPGA realization of
FIR filters by efficient and flexible systolization using distributed
arithmetic,”

IEEE Trans. Signal Process., vol. 56, no. 7, pp. 3009–3017, Jul. 2008.
[15] J.-I. Guo, C.-M. Liu, and C.-W. Jen, “The efficient memory-based VLSI

array design for DFT and DCT,” IEEE Trans. Circuits Syst. II, Analog
Digit. Signal Process., vol. 39, no. 10, pp. 723–733, Oct. 1992.

[16] P. K. Meher, “New approach to LUT implementation and accumulation
for memory-based multiplication,” in Proc. 2009 IEEE Int. Symp.
Circuits Syst., ISCAS’09, May 2009, pp. 453–456.

[17] A. K. Sharma, Advanced Semiconductor Memories: Architectures,
Designs, and Applications. Piscataway, NJ: IEEE Press, 2003.

[18] E. John, “Semiconductor memory circuits,” in Digital Design and
Fabrication, V. G. Oklobdzija, Ed. Boca Raton, FL: CRC Press, 2008.

[19] P. K. Meher, “New look-up-table optimizations for memory-based
multiplication,” in Proc. Int. Symp. Integr. Circuits (ISIC’09), Dec.
2009.

 K.Purnima et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3530-3535

3535

